
Sequential Molecular and Cellular Events during Neoplastic
Progression: A Mouse Syngeneic Ovarian Cancer Model1

Paul C. Roberts*, Emilio P. Mottillo*,y, Andrea C. Baxa*, Henry H. Q. Heng z, Nicole Doyon-Reale*,
Lucie Gregoire*,y, Wayne D. Lancaster y,z, Raja Rabah§ and Eva M. Schmelzy

*Department of Immunology/Microbiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
yKarmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA; zCenter for
Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
§Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, USA

Abstract

Studies performed to identify early events of ovarian

cancer and to establish molecular markers to support

early detection and development of chemopreventive

regimens have been hindered by a lack of adequate cell

models. Taking advantage of the spontaneous trans-

formation of mouse ovarian surface epithelial (MOSE)

cells in culture, we isolated and characterized dis-

tinct transitional stages of ovarian cancer as the cells

progressed from a premalignant nontumorigenic phe-

notype to a highly aggressive malignant phenotype.

Transitional stages were concurrent with progressive

increases in proliferation, anchorage-independent

growth capacity, in vivo tumor formation, and aneu-

ploidy. During neoplastic progression, our ovarian can-

cer model underwent distinct remodeling of the actin

cytoskeleton and focal adhesion complexes, concomi-

tant with downregulation and/or aberrant subcellular

localization of two tumor-suppressor proteins E-

cadherin and connexin-43. In addition, we demonstrate

that epigenetic silencing of E-cadherin through pro-

moter methylation is associated with neoplastic pro-

gression of our ovarian cancer model. These results

establish critical interactions between cellular cyto-

skeletal remodeling and epigenetic silencing events

in the progression of ovarian cancer. Thus, our MOSE

model provides an excellent tool to identify both cel-

lular andmolecular changes in the early and late stages

of ovarian cancer, to evaluate their regulation, and to

determine their significance in an immunocompetent

in vivo environment.
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Introduction

Ovarian cancer is the deadliest gynecologic malignancy,

with a survival rate of only 50%. In 2004, an estimated

25,500 women from the United States were diagnosed

with—and 16,000 women died from—ovarian cancer [1].

It is the fourth leading cause of death among all cancers in

women in Western countries and is the leading cause of death

from female reproductive tract malignancies. Ovarian cancer

is rarely diagnosed early, and reliable molecular or clinical

markers to identify early changes have not been established.

Moreover, prevention strategies that would inhibit early pro-

gression of this fatal disease are currently not available.

Most ovarian tumors originate from the surface epithelium

lining and can be categorized into four mayor types: serous,

endometrioid, mucinous, or clear cell tumors [2,3]. However,

gene expression patterns only allow for the distinction of mu-

cinous and clear cell carcinomas from serous tumors [4]. Human

OSE cells are often found in the form of inclusion cysts and

clefts, which may represent the earliest stage of neoplastic pro-

gression leading to primary ovarian tumors [2]. Dissemination

of ovarian cancer cells into the peritoneal cavity is the result of

the exfoliation of cells from the primary tumor. These cells can

either form ascites containing tumor cell clusters, or migrate to

distant sites throughout the peritoneum, where they will attach

to the serosa and begin to form solid secondary tumors. The

ability of ovarian tumor cells to adjust their migratory capacity

requires reorganization in the actin cytoskeletal network (par-

ticularly at sites of focal adhesion complexes) and changes in

cellular adhesion molecules, growth factor receptors, and intra-

cellular signaling kinases [5,6]. These changes seem to be

common events in an otherwise very heterogeneous disease.

Human OSE cells express epithelium-specific cytokeratins

(mucins), display apical microvilli, but also express vimentin

and N-cadherin, which are not typically expressed in epithelial

cells [3,7]. Thus, OSE cells exhibit both mesenchymal and epi-

thelial characteristics, an epithelial–mesenchymal phenotype.

This mixed phenotype enables the OSE cells to respond rapidly
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to a variety of environmental, hormonal, and stress factors,

but is also thought to contribute to the onset of neoplastic

transformation by rendering the cells more susceptible to

transition from an epithelial to amesenchymal-like phenotype

[epithelial–mesenchymal transition (EMT)]. A deregulation

of cellular adhesions and gap junctional intercellular com-

munication (GJIC) has been described in the EMT of nu-

merous types of epithelial-derived cancers (reviewed in Refs.

[8,9]). E-cadherin expression in normal human ovarian sur-

face epithelium is low to absent, but its expression, albeit vari-

able, appears to increase in benign andmany neoplastic stage

I and II ovarian tumors, or inwell-differentiated ovarian cancers

[10–12]. E-cadherin expression is highly variable in advanced-

stage ovarian carcinomas and is virtually undetectable in

poorly differentiated ovarian cancer [12–15]. Mutational in-

activation of E-cadherin is rare in ovarian cancers [16]. How-

ever, epigenetic silencing of E-cadherin gene expression

through hypermethylation has been reported in cancers of

other organs, including the bladder [17], breast, and prostate

[18]. Similar to E-cadherin, downregulation of connexin-43 ex-

pression has been reported for advanced ovarian carcinoma

[19]. Interestingly, suppression of GJIC by epigenetic silencing

has been demonstrated in endometrial cancer [20].

Here, we report the establishment of a mouse ovarian can-

cer model representing the progressive stages of ovarian can-

cer. This model displays similar alterations in the actin

cytoskeleton, cellular adhesion proteins, and connexin-43 that

are observed in human ovarian cancer. Furthermore, we pro-

vide evidence that the downregulated expression of E-cadherin

in cells representing the late stages of ovarian cancer is as-

sociated with the epigenetic silencing of its promoter region by

DNA methylation. Thus, our syngeneic MOSE model derived

from the C57BL6 mouse represents an excellent in vitro and

in vivomodel used to characterizemolecular and cellular events

associated with ovarian carcinogenesis. Furthermore, immuno-

therapeutic strategies designed for the treatment of ovarian

cancer can be evaluated in this syngeneic MOSE model.

Materials and Methods

Cell Culture

Mouse ovarian surface epithelial (MOSE) cells were iso-

lated as described by Roby et al. [21]. Briefly, ovaries from

female breeder mice (C57BL/6) were resected and, following

removal of the residual remnants of the oviducts and bursa,

were incubated for 20minutes in Dulbecco’smodified Eagle’s

medium (DMEM) supplemented with trypsin. Single cells and

clumps of MOSE were collected, pelleted by mild centrifuga-

tion, resuspended in a MOSE growth medium, and seeded

onto collagen-coated tissue culture dishes. The MOSE cell

growth medium consisted of DMEM supplemented with 4%

fetal bovine serum, 100 mg/ml each of penicillin and strepto-

mycin, 5 mg/ml insulin, 5 mg/ml transferrin, and 5 ng/ml sodium

selenite (Invitrogen, Carlsbad, CA). During early passage of

cells, the growth medium was further supplemented with

mEGF (2 ng/ml) and hydrocortisone (0.5 mg/ml). Collagen-

coated flasks were discontinued after passage 5. Cells were

routinely passaged at a 1:6 to 1:12 ratio, depending on their

growth rates. ID8 cells were generously provided byDrs. Paul

F. Terranova and K. F. Roby (University of Kansas) [21].

For growth rate analyses, cells were seeded at densities

of 1 � 104 and 5 � 104 cells, and subconfluent cell counts

were determined at different times postseeding. Cell dou-

bling times were estimated from the formula: T*ln2/ln(Xe/Xb),

where Xe is the cell number determined at endpoint, Xb is the

cell number at the beginning time point, and T is the total

elapsed time (in hours).

To capture the cells in transitional states of carcinogen-

esis, we initially prepared frozen cell stocks after every five

passages in cell culture. After passage 60, subsequent fro-

zen stocks were prepared every 10 or 30 passages. In ad-

dition, we also prepared protein lysates and isolated RNA

from select passages. The classification into early (MOSE-E),

early/intermediate (MOSE-E/I), intermediate (MOSE-I), and

late (MOSE-L) stages was based on ranges of passage

number that displayed similar growth rates and anchorage-

independent growth efficiencies, both in soft agar and in multi-

cellular spheroid culture.

SKY Analysis

Cells were cultured for 2 days at 37jC. Mitotic cells were

harvested then treated with colcemid for 2 hours. Chromoso-

mal slides were prepared using the standard protocol, includ-

ing hypotonic treatment, fixation, and air drying [22]. After

pepsin treatment and fixation with formaldehyde followed by

dehydration, the chromosomal slides were denatured and

hybridized with denatured mouse painting probes (SkyPaint,

Applied Spectral Imaging, Vista, CA) for over 48 hours at

37jC. Following postwash and detection, the chromosomes

were stained with DAPI (4c6-diamidino-2-phenylindole�2HCl)
and mounted with antifade. For each stage of cells, a total of

10 to 14 mitotic figures with good hybridization quality and

minimal overlapping were captured using a charge-coupled

device camera. This procedure was used for both the

spectral and DAPI images [23]. Following image acquisition,

chromosomes were karyotyped according to their color and

size using Applied Spectral Imaging software [22,23].

Experimental Animals and Histopathology

Adult or 6- to 8-week-old female C57BL6 mice were pur-

chased from the Frederick Cancer Animal Research Produc-

tion Laboratory of the National Institutes of Health (NIH). For

in vivo tumor formation, mice were injected intraperitoneally

with a total volume of 0.5 ml of phosphate-buffered saline

(PBS) containing 5 � 106 cells of MOSE-E (n = 3) and

MOSE-L (n = 6). As a positive control, we used ID8 cells

(n = 2). Animals were weighed twice weekly and monitored

for the development of ascites or palpable tumor formation

for up to 60 days. All animal studies were approved by the

Institutional Animal Care and Use Committee of the Wayne

State University School of Medicine. At the time of sacrifice,

organs were harvested and fixed in 10% buffered formalin.

Routine paraffin embedding of tissues and hematoxylin and

eosin staining of tissue sections were performed by AML

Laboratories (Baltimore, MD).
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Soft Agar Growth Assay and Matrigel Cultures

Cells (1.5 � 104) were suspended in 1.0 ml of 0.5%

Bactoagar (Difco Laboratories, Detroit, MI) in the MOSE cell

growth medium at 42jC, layered over 1 ml of 0.8% Bactoagar

in DMEM in 12-well dishes, and cultured in 5% CO2 in a

humidified chamber. Colonies (>10 mm) were counted 10 to

21 days after seeding, and their size was determined using a

�10 calibrated eyepiece. MOSE cell lines (2 � 104 cells/well)

were also embedded directly in Matrigel diluted 1:1 with the

growth medium. Following solidification of theMatrigel, cultures

were incubated at 37jC with an overlay of growth medium and

monitored over a 10-day period. Phase contrast images of

colonies grown in Matrigel (BD Biosciences, Franklin Lakes,

NJ) were captured with a Nikon Coolpix 990 digital camera

attached to a Nikon Diaphot microscope using �4, �10, and

�20 objectives. Alternatively,MOSEcells were cultured directly

on Matrigel-coated 12-well dishes (Matrigel diluted 1:1 prior to

coating) and incubated in growth medium at 37jC.

Spheroid Cultures

MOSE cells were seeded at a density of 1 � 105 cells/well

in 12-well culture dishes coated with 1% agarose. Cells were

gently agitated during the first several daysof culture.Spheroid

growth was monitored daily for a period of 7 to 14 days.

Images of spheroids were digitally captured using a Nikon

Coolpix 990 digital camera attached to an inverted Nikon

Diaphot microscope using either a �10 or a �20 objective.

Collagen Raft Cultures

Organotypic collagen raft cultures were prepared essen-

tially as described by Gregoire et al. [26], with minor modi-

fications. Briefly, collagen plugs (2.5 ml of 1.63 mg/ml rat

tail collagen; BD Biosciences) with or without fibroblast

feeder cells were prepared in transwell filter inserts (BD

Biosciences) and equilibrated with the MOSE cell growth

medium prior to seeding cells. Cells (5 � 105) were seeded

onto collagen plugs and allowed to grow to confluency

at 37jC in a humidified incubator under 5% CO2 for 1 to

2 days. Raft cultures were subsequently allowed to grow

under an air/liquid interface for 14 to 21 days by removing

the medium from the top chamber. We did not observe any

influence of the fibroblast feeder cells on the growth prop-

erties of MOSE cells, so their use was discontinued. Cells

were fed by changing the medium every 2 to 3 days from

the bottom chamber. For histopathological analysis of the

raft cultures, the cultures were overlain with 2% agarose in

DMEM at 42jC and transferred to a 10% buffered formalin

for processing by routine histopathology.

Western Blot Analysis

Cells grown in monolayer culture were scraped off the

plates and lysed with RIPA buffer [10 mM Tris–HCl, 150 mM

NaCl, 1% Triton X-100, 0.5%Na-deoxycholate, 0.1% sodium

dodecyl sulfate (SDS), 1 mM EDTA, 0.2 mM PMSF, 1 mg/ml

aprotinin, 1 mg/ml leupeptin, and 1 mg/ml pepstatin] for

30 minutes on ice. After passing through a 20-gauge needle

(10 times), the lysates were centrifuged (15,000g) for

20 minutes at 4jC. Protein concentrations were determined

using a bicinchoninic acid protein assay kit (Pierce Biotech-

nology, Rockford, IL). Proteins (20–50 mg/lane) were sepa-

rated on 10% or 12% SDS polyacrylamide gels and

transferred to a PVDF membrane (BioRad, Hercules, CA).

Membranes were blocked with 5% nonfat dry milk in Tris-

buffered saline with Tween-20 (TBST containing 10 mM

Tris, 150 mMNaCl, and 0.05% Tween-20, pH 8.0). Blots were

immunostained using monoclonal antibodies for P-cadherin,

E-cadherin, N-cadherin, connexin-43, phospho-connexin-43,

vimentin, and p120catenin (BD Biosciences); b-catenin, vin-
culin and b-actin, and pan-cytokeratin (Sigma, St. Louis, MO);

or polyclonal antibodies specific for mouse E-cadherin (R&D

Systems, Inc., Minneapolis, MN), g-catenin (or plakoglobin,

sc-1497; Santa Cruz Biotechnology, Inc., Santa Cruz, CA),

and vascular endothelial growth factor (VEGF; PC315; Onco-

gene, Cambridge, MA). Following incubation with appropriate

horseradish peroxidase–conjugated secondary antibodies,

proteins were visualized by enhanced chemiluminescence.

A431 and rat cerebrum lysates (BD Transduction Labora-

tories) were used as positive controls. Densitometric quan-

titation of relative band intensity was performed using the

NIH Image J program. Quantitation was normalized to rela-

tive optical units of b-actin or a-tubulin levels in each lane

and expressed as a relative percent expression to the early

passage of MOSE-E cells (MOSE-E set to 100%). Data are

expressed as mean ± standard deviation of two separate

Western blot analyses using InStat (Graphpad Software,

Inc., San Diego, CA).

Semiquantitative Reverse Transcription Polymerase

Chain Reaction (RT-PCR)

Total RNA was extracted from cells using the Rneasy Mini

Kit (Qiagen, Valencia, CA). First-strand synthesis was per-

formed on 1 mg of total RNA and reverse-transcribed using

the ImProm-II Reverse Transcription System (Promega,

Madison, WI) and an oligo-dT primer, as per the manufac-

turer’s instructions. Second-strand synthesis was performed

on 0.75 ml of cDNA template using specific probes in a 15-ml
PCR reaction volume using Qiagen Taq PCR Master Mix

for 30 cycles at 94jC for 30 seconds, 60jC for 30 seconds,

and 72jC for 45 seconds, with a final extension at 72jC for

7 minutes. Gene-specific primer sequences are available

on request. PCR products were separated on 1.5% agarose

gels and stained with ethidium bromide; gels were captured

using the Eagle Eye II gel documentation system (Strata-

gene, La Jolla, CA). Band intensities were analyzed using

the NIH Image J quantification software, expressed in

arbitrary units. Expression levels were normalized to the re-

lative expression of three housekeeping genes: �-actin,

glyceraldehyde phosphate dehydrogenase (GAPDH ), and

phosphoglycerol kinase (PGK ). Data were obtained by calcu-

lating the mean ± SD of three separate PCRs using the sta-

tistics program Instat (GraphPad). PCR products were verified

for the following size bands: �-actin, 138 bp; GAPDH ,

168 bp; PGK, 366 bp; cyclin D1, 500 bp; b-catenin, 559 bp;

connexin-43, 399 bp; E-cadherin, 376 bp; P-cadherin,

235 bp; N-cadherin, 508 bp; and VEGF isoforms, 345, 273,

and 141 bp.
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Methylation-Specific PCR (MSP)

Bisulfite modification of DNA was performed as previously

described [24]. Briefly, 2 mg of DNA was treated with sodium

bisulfite (Sigma) for 16 hours at 50jC. Modified DNA was

purified by passing through a QIAquick spin column (Qiagen)

and eluting in 50 ml of water. The reaction was completed by

adding NaOH to a final concentration of 0.3 M for 5 minutes

at room temperature (RT), followed by ethanol precipita-

tion. DNA was resuspended in 25 ml of water and stored at

�20jC. MS-PCRwas performed on 1 ml of modified DNA in a

25-ml reaction using the Qiagen Taq PCRMaster Mix supple-

mented with MgCl2 (final concentration, 6.8 mM). Methyla-

tion and unmethylation-specific primers were designed using

MethPrimer [25]. The primer sequences of the promoter re-

gion of themouseE-cadherin gene for themethylated reaction

were 5V-GGTTGTCGTTTTATTTTTATAATCG-3V(sense) and

5V-AAACTTTAATCATCATCTAAATTTCGGT-3V(antisense),

and for the unmethylated reaction were 5V-GGTTGTTGTTT-

TATTTTTATAATTGG-3V (sense) and 5V-AAAACTTTAAT-

CATCATCTAAATTTCCAT-3V(antisense). PCR conditions

were 94jC for 5 minutes; 30 cycles of 94jC for 30 seconds,

62.5jC for 30 seconds, and 72jC for 45 seconds; and a final

extension of 72jC for 7 minutes. A hot start was performed

on the PCR reaction to aid in distinguishing methylated and

unmethylated alleles. PCR products were separated on a

2% agarose gel and stained for ethidium bromide. For de-

methylation experiments, cells were treated with either

200 nM or 2 mM 5V-aza-2V-deoxycytidine (5V-azaDC; Sigma)

for 4 days and processed as described above.

Indirect Immunofluorescence Staining

Cells were grown on glass coverslips and fixed in either cold

methanol (�20jC) or 3% paraformaldehyde followed by a

permeabilization step in 0.5% Triton X-100 for 10 minutes at

RT. Cells were blocked with 2% chicken serum for at least

60 minutes prior to immunostaining. Incubations with primary

antibodies (see above) were carried out for 20 minutes at RT,

followed by three to five washes with PBS. Appropriate second-

ary antibodies (chicken) conjugated to either AlexaFluor488,

AlexaFluor594, or AlexaFluor635 (Molecular Probes, Eugene,

OR) were carried out for 20 minutes at RT. Coverslips were

mountedontoglass slidesusingMowiol (Calbiochem,EMDBio-

sciences, La Jolla, CA). Immunofluorescence was observed

using�40and�60objectives onaNikonE800epifluorescence

microscope equipped with dual excitation and emission filter

wheels, z-axis control, and a Coolsnap FX (Roper Scientific,

Tucson, AZ) charge-coupled device camera. Images were

captured and analyzed using Metamorph (Molecular Devices,

Sunnyvale, CA) and Autoquant software (Autoquant Imaging,

Inc., Troy, NY).

Results

Characterization of MOSE Cell Lines

To establish a syngeneic mouse cell model of ovarian

cancer that represents distinct transitional states of neo-

plastic progression, we cultured normal primary MOSE cells,

which, on continued passage in cell culture, underwent spon-

taneous transformation and gradually progressed to a malig-

nant phenotype. The malignant phenotype is defined by the

ability to form colonies in soft agar, to grow as multicellular

tumor nodules on organotypic raft culture, and to induce

intraperitoneal tumor formation in the immunocompetent

C57BL6 mouse.

Growth characteristics in monolayer, spheroid, organotypic

collagen raft, and Matrigel cultures

As depicted in Figure 1, our MOSE model undergoes

distinct phenotypic changes, which occur sequentially on

continued passage in monolayer culture. Early-passage

(MOSE-E) cells are larger, occupying two to three times the

surface area of late-passage cells (Figure 1, a and e). They

exhibit contact inhibition of growth and a typical epithelial

cobblestone-like phenotype, characterized by well-defined

cell –cell contact areas. MOSE-E/I cells are somewhat

smaller and more heterogeneous, and there is evidence of

acquisition of spindle-shape morphology in some of the cells

when observed at a low seeding density (Figure 1, b and f ).

This transition to spindle-shape morphology progresses in

intermediate-passage (MOSE-I) cells (Figure 1, c and g) and

is the predominant phenotype in late-passage (MOSE-L)

cells (Figure 1, d and h). In the latter two transitional states,

cells are significantly smaller and do not exhibit contact in-

hibition of growth, which is evident by the formation of foci

in the monolayer (arrows, Figure 1, c and d ). All of the MOSE

transitional cell types are cytokeratin-positive, confirming their

epithelial-like origin. In addition, all cell lines were weakly posi-

tive for vimentin both by immunofluorescence staining and

Western blot analysis (data not shown). At no time did we ob-

serve a loss of cytokeratin expression. This is reflective of the

epithelial–mesenchymal phenotype of ovarian surface epithe-

lium, which appears to be retained during MOSE progression.

To further demarcate these transitional states, we deter-

mined the growth rate and the capacity toward anchorage-

independent growth, an in vitro hallmark of tumorigenic cell

lines. The latter was assessed by the ability of the cells to

grow as multicellular layers in an organotypic collagen raft

or Matrigel culture, to form colonies in soft agar or Matrigel,

as well as to grow as multicellular spheroids in suspension

culture. As shown in Table 1, as cells make a transition to a

more aggressive phenotype, their growth rates increase sig-

nificantly, as has been described frequently in human cancer.

During passaging, the cells progressively acquire the ability

to invade and form multicellular layers on collagen rafts and

grow as multicellular spheroids. The latter was highly depen-

dent on passage number (Figure 1, i– l ), with MOSE-L cells

exhibiting spheroid growth greater than 200 mm in diameter.

The spheroids in MOSE-L cultures appeared to coalesce

or fuse together, resulting in large, glandular-like spheroids.

This was not observed in MOSE-I or MOSE-E/I cells, sug-

gesting that malignant progression led to acquisition of this

property. Interestingly, another mouse ovarian cancer cell line

(ID8 cells) [21] did not display a capacity for multicellular

spheroid growth and died after 6 days in spheroid culture (data

not shown). A higher colony-forming efficiency (CFE) in soft
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agar also appeared to be associated with an increasing pas-

sagenumber:CFEofMOSE-L>MOSE-I>MOSE-E/I>MOSE-E.

Despite the lack of spheroid formation, ID8 cells were able to

grow as colonies in soft agar (Table 1). In contrast to MOSE-E

cells, which grow as a monolayer on collagen rafts, MOSE-E/I,

MOSE-I, and MOSE-L cells progressively acquire the capacity

to invade collagen and form multilayers (Figure 1, m–p). Inter-

estingly, the growth phenotypes in organotypic raft culture

closely mimic what we have previously reported for the neo-

plastic progression of E6/E7–immortalized human ovarian

surface epithelial cells [26]. Concurrent with their increased

growth rate and anchorage-independent phenotype, the

MOSE-L cells also acquired the ability to grow aggressively

and form vasculogenic-like structures when embedded in

Matrigel (Figure 2B). In contrast, the early-passage MOSE-E

cells only grew as small clusters of cells, confirming their low

tumorigenic potential (Figure 2A). When cells were cultured on

top of Matrigel (data not shown), the MOSE-E cells grew as

monolayers, which tended to roll up as sheets, whereas the

MOSE-I and MOSE-L cells grew as multicellular aggregates,

with the tendency to form vasculogenic-like structures similar

to those depicted in Figure 2B. Interestingly, the vasculogenic-

like protrusions displayed by MOSE-L grown in Matrigel

(Figure 2B) were highly reminiscent of the structures observed

during Matrigel cultures of highly aggressive human ovarian

cancer cell lines [27].

In vivo growth properties of MOSE cells

The tumorigenic potential of our model was then con-

firmed in vivo in the immunocompetent C57BL6 mouse

(Table 1). Female C57BL6 mice were injected intraperi-

toneally with 5 � 106 of MOSE-E or MOSE-L cells, and

Figure 1. Cellular morphology of MOSE transitional cell lines in primary culture. MOSE-E (a, e, and i), MOSE-E/I (b, f, and j), MOSE-I (c, g, and k), and MOSE-L (d,

h, and l) at confluent (a–d) and subconfluent (e–h) cell densities. Multicellular spheroids were cultivated for 7 days (i – l). Organotypic collagen raft cultures were

cultivated for 14 days (m–p). Calibration bars, 100 �m (a–h) and 200 �m (i – l).

Table 1. Growth Characteristics of MOSE Cell Lines.

MOSE Classification

(Passage Number)

Doubling Rate

(in Hours; ±SEM)

% CFU*

(±SEM)

Spheroid

Growthy
Raft

Culturez
In Vivo

Tumorigenicity§

MOSE-E p4–p15 26.51 (±1.52) 0.4 (±0.2) b S 0/3 mice

MOSE-E/I p20–p35 18.4 (±0.95) 0.8–2.1 (±0.4) ++ S/I ND

MOSE-I p40–p80 15.55 (±0.74) 2–5.4 (±0.6) +++ M/I ND

MOSE-L p90–170 13.8 (±0.51) 13.7–16 (±1.1) ++++ M/I 6/6 mice (33–38 days)

ID8 15.08 (±0.46) 11.8 (±1.6) b M/I 2/2 mice (60 days)

E=Early; E/I=Early/Intermediate; I=Intermediate; and L=Late passage MOSE cells and passage range.

*Percent CFU (percent colony forming units in soft agar assay) = mean of the number of colonies per well/number of cells seeded per well � 100.
ySpheroid growth defined as: (b) little to no growth; (++) spheroids < 50 mm; (+++) spheroids > 50 < 200 mm in diameter; and (++++) spheroids > 200 mm in diameter.
zOrganotypic collagen raft culture: S = single monolayer growth; I = invasion of collagen; and M = multilayered growth.
§Number of mice with detectable ascites or macroscopic evidence of peritoneal tumor formation. Days until death or sacrifice are reported in parenthesis.
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formation of ascites or palpable tumors was followed for up to

60 days.We did not observe tumor formation or development

of ascites in MOSE-E–injected mice. In contrast, mice in-

jected with MOSE-L cells died after approximately 32 to

38 days. At necropsy, four of six mice showedmassive tumor

nodule formation throughout the abdominal cavity, with gas-

tric outlet obstruction and a markedly distended stomach due

to the tumor impinging on the pyloric/duodenal junction

(Figure 3a); the remaining two mice showed peritoneal tumor

nodule formation without gastric outlet obstruction. Lung con-

solidation was noted in five of six mice injected with MOSE-L

cells and a few microscopic lymphangiectatic metastases.

Hemorrhagic ascites were also present. Figure 3 shows a

representative nodule of the poorly differentiated tumor,

focally invading the pancreas (arrows, Figure 3b) and the

pyloric/duodenal junction (arrows, Figure 3c).

Together, these in vitro and in vivo results demonstrate

that we have indeed isolated different transitional states

of MOSE cells as they progressed from a premalignant to a

highly aggressive phenotype. We then investigated the under-

lying molecular changes associated with the neoplastic pro-

gression of MOSE cells.

SKY Analysis of MOSE Cells

To assess the degree of genomic instability in our MOSE

cells, the cells were subjected to SKY analyses (summarized

in Table 2). There were no clonal translocations detected at

any stage tested. Nonclonal translocations were only de-

tected in MOSE-L cells, albeit at low frequency. It is apparent

that, even in the earliest transitional stage (MOSE-E), signifi-

cant genetic alterations have occurred (Table 2). The aver-

age chromosomal number observed inMOSE-E cells was 62.

Even though 50% of cells at this stage displayed diploidy or

near-diploidy (40±), only a few cells had completely normal

karyotypes. The majority of the near-diploid cells displayed

trisomy or monosomy, but as the cells progressed, there was

a trend toward increased numeric abnormalities. Aneuploidy

was highest in the intermediate-stage cells (MOSE-I), where

the average chromosome number was 71; only 40% of cells

at this stage were diploid or near-diploid, 50% of the cells were

either near-triploid or tetraploid, and 10% displayed octaploidy.

In the late-passage cells (MOSE-L), the average chromosome

number was 60, with 30% displaying near-tetraploidy. One

translocation occurred at this stage [t(8;15)]. It was not clonal

aberration due to low frequency. There were no normal karyo-

types among the cells displaying near-diploidy at this stage.

Chromosomal loss was also observed during all stages, albeit

at low frequency (10–20%).

Actin Reorganization during Malignant Transition

As cells make a transition from a normal to an aggressive

cancer phenotype, epithelial cells must acquire the capacity

Figure 2. Aggressive growth phenotype assayed in Matrigel cultures.

Suspensions of MOSE-E (A) and MOSE-L (B) cells were embedded in

Matrigel and cultured at 37�C for up to 10 days. Digital micrographs recorded

on day 5 postembedding are depicted. MOSE-E cells did not acquire the

capacity to grow beyond a two- to six-cell cluster even at 10 days post-

embedding. Vasculogenic-like structures emanating from MOSE-L cell clus-

ters are indicated by arrows. Phase contrast images were recorded using

a �20 objective.

Figure 3. In vivo histopathology of MOSE-L cells. (a) Macroscopic image of a

MOSE-L– injected C57BL6 mouse sacrificed at 35 days (arrows depict tumors

and enlargement of the stomach). (b) Hematoxylin –eosin stain of tumor

nodule on the pancreas, with arrows delineating invasion. (c) Hematoxylin –

eosin stain of tumor invasion into the pyloric –duodenal junction. Calibration

bar, 200 �m.
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to migrate and invade different tissue types. During this tran-

sition, cells undergo drastic phenotypic changes, which are

thought to primarily involve a reorganization of the cellu-

lar cytoskeleton and a deregulation of cellular adhesins and

intercellular communication. Because of the role of F-actin

and focal adhesion proteins, particularly vinculin, in main-

taining the stability of the cytoskeleton and focal adhesion

complexes, cytoskeletal reorganization events were moni-

tored during the transitional progression of MOSE cells.

We assessed F-actin and vinculin organization in our

model by indirect immunofluorescence staining (Figure 4). In

early-passage cells (MOSE-E), prominent stress fibers and

thick cortical actin ring structures were readily visualized by

phalloiden staining (Figure 4, a and c). In addition, vinculin was

observed to coalescewithF-actin atmultiple adhesionplaques

both at the cell periphery and at numerous cell–substratum

contact areas (Figure 4, b and d ). Vinculin-positive structures

were elongated and terminated at the ends of actin bundles.

Significant changes in F-actin and vinculin staining were not

observed in MOSE-E/I cells. As cells progress to a more

aggressive phenotype (MOSE-L cells; Figure 4, e–h), there

is a concomitant loss or reduction in stress fiber formation, an

increase in membrane ruffles, a reduction in cell–substratum

vinculin staining, and smaller peripheral focal adhesion struc-

tures. Numerous phalloiden-positive projections emanating

from the cell surface of MOSE-L cells were evident and were

particularly prominent and extensive at cell–cell contact areas.

These changes were evident in approximately 50% of MOSE-I

cells (data not shown). These results indicate that both actin

and focal adhesion remodeling are associated with the transi-

tional progression of MOSE.

MOSE Cells Exhibit Differential mRNA and Protein

Expression Profiles

One of the hallmarks of cancer progression is loss of func-

tional adhesins and cytoskeletal remodeling, both of which

may contribute to the metastatic potential of tumor cells.

Because we observed actin remodeling as transition of the

cells progressed, we postulated that the deregulation of ad-

hesion complexes or GJIC may also be involved in the pro-

gression of MOSE cells. Thus, we determined the mRNA

and protein expression profiles of several key cellular adhe-

sion molecules (cadherins and associated catenins) and the

gap junctional protein connexin-43. We also evaluated cyclin

D1 and VEGF, which are known to be aberrantly expressed

in human cancers.

Initially, we examined mRNA expression profiles by semi-

quantitative RT-PCR (Figure 5, A and B). To minimize the

effects of a potential aberrant expression of housekeeping

genes, we normalized all expression levels to three different

housekeeping genes: b-actin,GAPDH, andPGK. In our panel

of selected genes, which includes E-cadherin, N-cadherin,

P-cadherin, b-catenin, plakoglobin, connexin-43, cyclin D1,

and VEGF, only E-cadherin mRNA was significantly down-

regulated in our model. The loss of E-cadherin mRNA ex-

pression followed the transitional progression of the MOSE

cells, with MOSE-I and MOSE-L cells exhibiting significant

decreases in E-cadherin mRNA expression. Cyclin D1 was

the only gene in our panel that was upregulated early during

the transition of MOSE-E to MOSE-E/I. P-cadherin, plako-

globin, and VEGF mRNA (data not shown), or N-cadherin,

Table 2. Summary of Chromosomal SKY Analysis of MOSE Transitional

Stages.

MOSE Average Degree of Polyploidy (%)

Transitional

Stages

Chromosome

Number

(Range)

Near-

2N

Near-

3N

Near-

4N

Near-

5N

Near-

6N

Near-

8N

E 62 (40–140) 50 30 10 10

E/I 66 (40–86) 45 18 36

I 71 (37–168) 40 20 30 10

L 60 (36–92) 60 10 30

Figure 4. Actin reorganization and reduction in focal adhesion plaques in

MOSE cells. Immunofluorescent staining of MOSE-E (a–d) and MOSE-L

(e–h) with AlexaFluor488 phalloiden to visualize F-actin was performed on

cells seeded at both low (a and e) and high seeding densities (c and g). Vin-

culin staining (b, d, f, and h) of the same cells with monoclonal mouse anti-

vinculin antibody and AlexaFluor594-conjugated chicken antimouse Ig (original

magnification, �600).
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connexin-43, and b-catenin were detected at comparable

levels across all transitional states of MOSE cells.

In parallel, we also determined protein expression profiles

by Western blot analysis. As depicted in Figure 5, C and D,

protein levels of N-cadherin and b-catenin did not change

significantly during the malignant transition of MOSE cells.

In agreement with the mRNA profiles, protein levels of cyclin

D1 were elevated early in our model. In contrast, E-cadherin

protein levels decreased in later stages. Using immuno-

histochemistry, we also evaluated E-cadherin expression

in vivo in tumor tissues from MOSE-L–injected mice (data

not shown). Here, E-cadherin expression was weak and pre-

dominantly cytoplasmic when compared to control mouse

tissue derived from colonic and breast epithelium. Thus, the

loss of E-cadherin is a stable phenotype of MOSE-L cells.

Significant protein level changes in connexin-43, P-cadherin

(weakly present in all cell lines), VEGF, or plakoglobin were

not observed (data not shown).

Subcellular Localization of E-cadherin and Connexin-43

Is Altered during Malignant Progression of MOSE

Aberrant subcellular localizationof tumor-suppressor proteins—

in addition to, or instead of, altered expression—can con-

tribute to malignant progression. Hence, we asked whether

subcellular localizationof the cadherins, catenins, andconnexin-

43 proteins was altered during the transitional progression

of MOSE cells. This was particularly important with respect

to b-catenin in light of the downregulated expression of

E-cadherin. The association of both proteins at junctional

complexes is thought to be strictly regulated to limit the appear-

ance of cytosolic and nuclear b-catenin that are commonly

associated with changes in proliferation and adhesion in the

early stages of cancer.

Comparative immunofluorescence staining of transitional

MOSE cell lines revealed distinct differences both in the local-

ization and relative amounts of the cellular adhesion molecule

E-cadherin and thegap junctional complex protein connexin-43.

During early stages, both b-catenin and E-cadherin immuno-

stainings colocalized to the periphery at cell–cell junctions

(Figure 6, a–c). As cells progressed to a more malignant,

aggressive phenotype, the percentage of cells exhibiting

positive E-cadherin staining gradually decreased from

90% to 100% in MOSE-E and MOSE-E/I to less than 30%

of MOSE-I (Figure 6, d– f ) and 0% of MOSE-L (Figure 6, g– i).

Interestingly, loss of peripheral E-cadherin did not change

the expression of catenins present at the periphery because

b-catenin, plakoglobin, and p120 catenin (Figure 6, g– i; data

not shown) were present at the cell periphery. Subse-

quent immunostaining revealed that N-cadherin is the pre-

dominant peripheral cadherin present in all transitional states

of MOSE cells (data not shown).

Although mRNA and protein levels of connexin-43 were

maintained during neoplastic progression, subcellular locali-

zation changed dramatically. In the early stages of our model,

connexin-43 was largely restricted to cell–cell contact areas,

Figure 5. Differential mRNA and protein expression profiles during MOSE neoplastic progression. (A) Representative mRNA expression profile of MOSE cell lines

by semiquantitative RT-PCR. (B) Relative expression levels of selected genes normalized to the three housekeeping genes �-actin, PGK, and GAPDH. (C) A

representative protein expression profile of selected proteins by Western blot analysis. (D) Relative protein expression levels compared to levels in MOSE-E cells.
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where it coalesced into discrete punctate plaques at junctional

sites along the cell periphery (Figure 6, j– l). Double immuno-

fluorescence staining with a phospho-specific connexin-43

antibody confirmed that the connexin-43 at gap junctional

Figure 6. Aberrant subcellular localization of E-cadherin and connexin-43 in MOSE transitional cells. Upper panels (a– i): Dual immunofluorescence staining of

MOSE-E (a–c), MOSE-I (d– f), and MOSE-L cells (g– i) depicting �-catenin (green), E-cadherin (red), and DAPI staining (blue). Colocalization is visualized by

yellow staining in merged images (c, f, and i) (original magnification, �600). Lower panels (j – r): Immunofluorescent localization of connexin-43 (red),

phosphorylated connexin-43 (green), and DAPI (blue) in MOSE-E (j – l), MOSE-I (m–o), and MOSE-L cells (p– r). Yellow staining in merged images (l, o, and r)

depicts colocalization. Arrowheads in (j) and (k) delineate gap junctional plaque regions; arrows in (m) and (n) indicate intracellular aggregates of connexin-43

(original magnification, �600).
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plaques was partially phosphorylated (Figure 6k). In contrast,

more advanced stages exhibited reduced connexin-43 junc-

tional plaques, and staining became prominent in intracellular

compartments (Figure 6, m–r ). Connexin-43–positive stain-

ing in these intracellular compartments colocalized with

NBD-C6 ceramide staining, but did not colocalize with anti-

bodies against EE1, an early endosomal compartment anti-

gen, or with LysoTracker-RED (data not shown), suggesting

that connexin-43 transport in late-passage MOSE cells is

restricted to a Golgi-like compartment. Immunostaining with

the phospho-specific connexin-43 antibody failed to reveal

any subcellular difference, suggesting that altered phosphor-

ylation was not responsible for the failure of the cells to trans-

port connexin-43 to junctional regions. It should be noted that

there were residual patches of cells in MOSE-L cultures that

did display normal connexin-43 at junctional plaques, suggest-

ing that, despite the loss of E-cadherin, a subset of MOSE-L

cells retains the capacity for normal connexin-43 trafficking.

Epigenetic Silencing of the E-cadherin Gene

by Hypermethylation

Recently, efforts have focused on the role of hypermethylation

in the epigenetic gene silencing of tumor-suppressor genes

[28]. Due to the downregulation of E-cadherin mRNA and

protein levels (5- and 10-fold, respectively), we asked whether

methylation of the CpG islands in the mouse E-cadherin pro-

moter region could be partially responsible for the silencing

of the E-cadherin gene as transition of the MOSE cells

progressed. Initially, we assessed the ability of the potent

DNA methyltransferase inhibitor, 5Vaza-2V-deoxycytidine (5V-

azaDC), to overcome the repression of the mRNA synthesis

of the E-cadherin gene. As revealed by RT-PCR, an increase

in E-cadherin mRNA levels was achieved by the treatment

of MOSE-L cells with 5V-azaDC (Figure 7A). To determine if

E-cadherin promoter methylation is associated with progres-

sion in our cancer model, we performed MSP on bisulfite-

treated DNA derived from different transitional states. As

depicted in Figure 7B, MOSE-E cells displayed partial meth-

ylation as evidenced by the presence of both methylated and

unmethylated PCR amplicons, but the unmethylated species

appeared to be the predominant form (band ratio of methyl-

lated to unmethylated, M:U = 0.7) As cells make a transition,

there is a gradual loss of the unmethylated species and a

concomitant increase in the methylated species (M:U = 1.4,

MOSE-E/I; M:U = 3.2, MOSE-I; and M:U = 10, MOSE-L).

Mouse ovarian stromal fibroblasts (OSFs) that do not express

E-cadherin protein or mRNA serve as unmethylated controls

(Figure 7C). Importantly, E-cadherin promoter methylation

is a reversible process in our model because treatment with

5V-azaDC (Figure 7D) can partially convert the methylated

form to an unmethylated form (M:U=1.2). Together, these re-

sults demonstrate that gene silencing through methylation

occurs during the malignant progression of MOSE cells and

that this is an early and reversible effect, thereby identifying

promoter gene methylation as a target for anticancer agents.

Discussion

Various cell models have been developed to study OSE

cells, but cell culture models that allow for delineation of

transitional states of ovarian carcinogenesis both in vitro and

in vivo have not been well established. Because of the very

slow rate of spontaneous transformation in human ovarian

cells, we and others have employed SV40, human papillo-

mavirus E6/E7, Ras, or hTERT transduction to induce the

immortalization or transformation of cultured human OSE

cells [26,29–31]. Genetically modified adenoviruses have

been used to illustrate that inactivation of both p53 and RB1

leads to induction of tumorigenesis in the mouse [32]. More

recently, a mouse ovarian cancer model using genetically

engineered mice expressing the SV40 T antigen under the

control of the MSIIR promoter has been described [33]. A rat

model of spontaneous ovarian tumor progression has pro-

vided interesting insights into progressive cytogenetic

changes during tumorigenesis [34,35]. However, these cells

Figure 7. The mouse E-cadherin promoter region undergoes transitional methylation in MOSE cells. (A) RT-PCR analysis of E-cadherin mRNA in MOSE-L cells

treated in the presence or absence of 5 V-azaDC. (B) MS-PCR of bisulfite-treated DNA derived from MOSE-E, MOSE-E/I, MOSE-I, and MOSE-L cells with primer

sets specific for either the unmethylated (U) or methylated (M) CpG islands in the mouse E-cadherin promoter region. Untreated MOSE-L DNA (L-untr) was used

as a negative control for MSP-PCR. (C) MS-PCR of bisulfite-treated DNA derived from mouse OSF cells as a nonmethylated control. (D) MS-PCR of bisulfite-

treated DNA derived from MOSE-L cells treated with or without 5 V-azaDC.
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quickly become malignant and already form tumors after 6

to 10 passages, leaving only a very short time frame for the

molecular analysis of tumor biology and intervention. Initia-

tion of ovarian cancer in rats with DMBA provided a model

for chemically induced ovarian cancer, but cell lines for a

rapid screening of chemopreventive/therapeutic compounds

in vitro were not isolated and characterized [36].

In other existing rodent models, human cancer cells are

used as xenografts in immunodeficient mice. These models

lack critical site-specific interactions between tumor and stro-

mal cells, or regulatory stimuli from the immune system. This

is especially critical because ovarian cancer is a disease of

older women, and changes in the immune response (termed

immunosenescence) have been implied in the cancer of the

ovaries and other cancers [37]. These already existingmodels

provide important insights into ovarian tumor biology, but may

or may not be representative of the heterogeneous and spon-

taneous nature of human ovarian cancer. However, estab-

lished cell lines represent only a limited number of advanced

human ovarian tumors in their genetic makeup.

In the present study, we have isolated and identified

transitional states of ovarian cancer as normal mouse OSE

cells spontaneously undergo neoplastic transformation during

culturing. It was our goal to establish a model system

representing early, intermediate, and late stages of ovarian

cancer that can be used for in vitro mechanistic studies, as

well as for efficacy studies in vivo of both chemotherapeutic

treatment regimens and chemopreventive strategies in

immunocompetent mice. This is significant because it en-

ables us to include stromal constituents and immune surveil-

lance in the studies of progression of ovarian cancer, a

limiting factor in studies in nude mice with xenografts of

human or rat ovarian cell lines. In our model, a minimum of

four transitional states were distinguishable by in vitro growth

criteria, which included growth rate, CFE in soft agar, ability to

form multicellular spheroids or vasculogenic-like structures in

Matrigel, and morphologic phenotypes as determined by

cell size and actin and focal adhesion organization. In addi-

tion, in vivo tumorigenicity was confirmed in syngeneic im-

munocompetent mice. MOSE-E cells represent the earliest

transitional state of our model, characterized by a slow growth

rate, contact inhibition of growth, inability for anchorage-

independent growth, and failure to induce tumor formation

in syngeneic mice. This stage—albeit not normal—displays

many characteristics reminiscent of normal human OSE cells,

including correctly localized connexin-43, cadherins, and

catenins. In addition, it exhibits an actin cytoskeleton that

promotes and favors strong cell–substratum as well as cell–

cell attachments. Furthermore, cells at this stage grow as a

single monolayer in organotypic raft culture and on Matrigel,

reminiscent of normal ovarian surface epithelium. However,

the MOSE-E stage has already clearly undergone significant

genetic changes as indicated by the SKY analysis; in the

majority of near-diploid cells, monosomy and trisomy were

observed. Thus, the early MOSE-E stage represents an ex-

cellent model for early preneoplastic ovarian cancer, which

has not yet obtained the changes necessary to elicit tumor

formation in vivo.

MOSE-L cells represent the most aggressive transitional

stage: rapid growth rate, enhanced capacity for anchorage-

independent growth, and rapid tumorigenic potential in vivo.

These characteristics are associated with a disorganized

actin cytoskeleton and reduced focal adhesions concurrent

with the aberrant localization of connexin-43 and the down-

regulation of E-cadherin gene expression. Many of the clini-

cal features typical of ovarian cancer, including the presence

of tumor nodules throughout the omentum, gastric outlet

obstruction, and lymphangiectatic metastasis in the lungs,

were recapitulated in our model, as was the formation of

hemorrhagic ascites. We did not observe major chromosome

structural abnormalities in this mouse model; however, pro-

gressive aneuploidy was observed as the cells transitioned

to a more aggressive phenotype. This is in agreement with

the karyotypic analysis of the cell lines generated by Roby

et al. [21], in which the most common occurrence was tetra-

ploidy in aggressive cell lines. The progressive increase in

polyploidy that we observed in the transition from MOSE-E

to MOSE-I has also been reported in human ovarian cancer

[38]. The lack ofmajor structural aberrations onchromosomes,

but an increase in numeric alterations, may be inherent to

the mouse model. Increased structural alterations may also

be a characteristic associated with the heterogeneity of

in vivo–derived tumor tissue. Alternatively, our MOSE cells

may represent an earlier stage of progression than that

characterized in human primary ovarian carcinomas. Future

studies are planned to address the genomic stability of our

cells in vivo.

E-cadherin appears to be minimally expressed or com-

pletely absent in normal human OSE cells, but has been

observed in inclusion cysts and cleft formations in the normal

ovary [12,13,39]. Normal mouse OSE cells have been re-

ported to express E-cadherin [40], which may be reflective of

a more mature, differentiated state in MOSE cells [2]. In

contrast, metaplastic and early stages of ovarian cancer do

express variable levels of E-cadherin [39]. However, loss of

E-cadherin likely contributes to metastatic potential in late-

stage ovarian carcinoma [12,41,42]. The loss of E-cadherin

expression is frequently associated with the EMT. Its re-

expression partially leads to the reverse transitional step, MET

[42]. The sometimes contradictory reports of E-cadherin

expression in ovarian cancer are likely due to the epithelial–

mesenchymal mixed origin of OSE cells, which allows them

to naturally revert back and forth between EMT or MET. Loss

of E-cadherin expression due to mutational inactivation is

a rare event in ovarian cancer [16]. Consistent with obser-

vations in human disease, we find a slightly upregulated

E-cadherin expression in early stages, followed by a reduc-

tion and silencing of E-cadherin expression in the late stages

of our mouse ovarian cancer model. The loss of E-cadherin

expression was associated with an increased methylation

of the promoter region, resulting in gene silencing. Promoter

hypermethylation is a well-documented regulatory event

associated with neoplastic progression of multiple types of

cancer (see Ref. [43]). Our results clearly demonstrate that

methylation of the promoter region of the mouse E-cadherin

gene increases during neoplastic transition ofMOSE, resulting
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in reduced mRNA and protein expression, which can be

partially restored by treatment with 5V-azaDC. Global hyper-

methylation of CpG islands appears to be prevalent but

variable in ovarian cancer tissue [44–46]; hence, we expect

that other genes would also be differentially methylated in

our MOSE model. Future studies using microarray analyses

for a more global expression profiling will help identify other

marker genes undergoingmethylation-induced gene silencing

in this model.

Downregulation of E-cadherin did not result in altered

localization of b-catenin, which was still found at the periph-

ery and colocalized with plakoglobin and N-cadherin, regard-

less of the transitional stage of MOSE. Thus, in normal and

malignant MOSE, N-cadherin and probably P-cadherin can

serve as anchors for b-catenin at junctional complexes,

thereby preventing aberrant cytosolic or nuclear accumula-

tion of b-catenin. Normal human OSE cells have also been

shown to express N-cadherin [11,47]. A recent study has

suggested that E-cadherin, N-cadherin, and P-cadherin are

differentially expressed during the neoplastic progression

of OSE cells [11]. This concept of ‘‘cadherin switching’’ set

forth by Patel et al. [11] may partially explain the ability of the

ovarian cancer cell to micromanage itself in response to the

cellular environment, facilitating both motility and adhesion

to multiple surfaces or tissues.

GJIC is essential for tissue homeostasis and helps

regulate cell proliferation, apoptosis, and differentiation. In

general, GJIC appears to be disrupted in malignant cells,

allowing cells to escape growth constraints that are typically

imposed by neighboring cells, leading to clonal expansion

and subsequent tumor formation [48]. Connexin-43 has been

shown to be significantly reduced in human ovarian carci-

noma or established cell lines, compared to normal OSE cells

[19,49]. Forced expression of connexins can lead to a partial

reversion of the malignant phenotype [50,51]. In our MOSE

model, connexin-43 mRNA and protein levels were not

affected. However, the subcellular distribution of connexin-

43 was severely altered during the neoplastic progression

of MOSE. This is important because in vitro inhibition of

neoplastic cell growth by coculture with nontransformed

cells has been shown to require functional GJIC [52]. Our

results support a role of aberrant connexin-43 localization

with a neoplastic transition of the ovarian surface epithelium,

but also emphasize the need to corroborate global gene

expression profile data with subcellular distribution profiles

of the corresponding proteins.

It should be noted that there appears to be a close link

between gap junctional intercellular crosstalk and crosstalk

initiated by E-cadherin. In endometrial cancer cells, gap junc-

tional communication was found to be suppressed when the

E-cadherin gene was silenced by hypermethylation [20]. In

murine skin papilloma cells, intracellular trafficking of con-

nexins was dependent on E-cadherin expression [53]. Inter-

estingly, in the latter study, the presence of E-cadherin at

junctional complexes appeared to be required for the for-

mation of actin stress fibers, which facilitate the transport of

connexins to the cell surface. This would partially explain the

transitional state of the MOSE-L cells, where we observed

a lack of actin stress fibers, intracellular accumulation of

connexin-43, and loss of E-cadherin gene expression. It

is also evident from our observations that N-cadherin ex-

pression and proper trafficking may compensate for the

loss of E-cadherin and may serve to target connexin-43 to

gap junctional plaques. Patches of cells in MOSE-L cultures

that were E-cadherin–negative but N-cadherin–positive did

display connexin-43 at junctional plaques.

In summary, we have established a syngeneic mouse

ovarian cancer cell model that differentiates between the

early, early/intermediate, intermediate, and late stages of

ovarian cancer. In our model, we observed progressive alter-

ations in cytoskeletal, adhesion, and intercellular commu-

nication proteins typically seen in human ovarian cancer.

Thus, our model can be used to study the mechanisms of neo-

plastic progression both in vitro and in vivo. Importantly, in vivo

analysis can be conducted in the immunocompetent mouse,

allowing for an evaluation of immune surveillance in ovarian

carcinogenesis. Thismodel will also beuseful for the evaluation

of both chemopreventive and chemotherapeutic treatment

regimens, providing multiple stages and intracellular pro-

teins as markers for treatment efficacy. Perhaps the most

exciting use of this new model is in probing gene expression

changes during early stages of ovarian tumorigenesis. Both

the MOSE-E and MOSE-E/I stages should provide new

insights into genes involved in neoplastic progression and

new targets for prevention and treatment efforts.
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